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Abstract
One central problem in real algebraic geometry is to classify the real structures of a
given complex manifold. We address this problem for compact hyperkähler manifolds
by showing that any such manifold admits only finitely many real structures up to
equivalence. We actually prove more generally that there are only finitely many, up to
conjugacy, faithful finite group actions by holomorphic or anti-holomorphic automor-
phisms (the so-called Klein actions). In other words, the automorphism group and the
Klein automorphism group of a compact hyperkähler manifold contain only finitely
many conjugacy classes of finite subgroups. We furthermore answer a question of
Oguiso by showing that the automorphism group of a compact hyperkähler manifold
is finitely presented.
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1 Introduction

1.1 Background: real algebraic geometry

Given a complex algebraic variety X , a real form of X is an algebraic variety X0 defined
over the field of real numbers R such that X0 ⊗R C is isomorphic to X as complex
varieties. Of course, a complex variety can have distinct real forms. The simplest
example is probably the complex projective line P

1
C
, which has as non-isomorphic real

forms the real projective line P
1
R
and the conic without real points T 2

0 + T 2
1 + T 2

2 = 0.
More generally, given a fixed dimension, on one hand there is a unique smooth quadric
over C up to isomorphism; on the other hand, any non-degenerate real quadratic form
of the given rank gives rise to a real form of the complex quadric, however they are
further distinguished by the absolute value of the signature. Naturally, two real forms
X0 and X ′

0 are said to be equivalent if they are R-isomorphic.
In real algebraic geometry, one important problem is the classification of all real

forms, up to equivalence, of a given complex algebraic variety. It is more convenient
to reformulate this problem in terms of real structures. For simplicity, let us only
consider in the introduction smooth and projective complex varieties so that we can
shift to the complex analytic language via the GAGA principle [53]. By definition,
a real structure on a projective complex manifold is an anti-holomorphic involution;
and the natural equivalence relation between real structures is the conjugation by
a holomorphic automorphism. Note that this definition, as well as the equivalence
relation, stillmakes sense in the larger category of complexmanifolds (or even complex
analytic spaces). It is easy to see that the datum of a real form is equivalent to that of a
real structure and the equivalence relations correspond to each other (cf. [25, Exercise
II.4.7] and [8, Introduction]).

Twobasic questions towards the problemof classification of real structures naturally
arise: for a given complex manifold

(Existence) Does it admit at all any real structure?
(Finiteness) Are there only finitely many real structures up to equivalence?

For the first question on the existence, an obvious necessary condition is that the
complexmanifold should be isomorphic to its conjugate (cf. Definition 2.2 andLemma
2.3). Indeed, if we consider a class of manifolds varying in a moduli space M, then
we have always a set-theoretic involution on M sending a point [X ] to the point [X̄ ]
represented by the conjugate manifold, and the locus of those manifolds admitting a
real structure is a subset of the fixed locus of this involution.
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Finiteness of real structures on compact hyperkähler manifolds…

Once there exists at least one real structure σ : X → X on the complex mani-
fold X , we have the following cohomological “classification” of real structures due to
Borel–Serre [14]: the set of equivalence classes of real structures on X , hence the set
of R-isomorphism classes of real forms of X in the projective setting, is in bijection
with the (non-abelian) group cohomology H1(Z/2Z,Aut(X)), where Z/2Z is natu-
rally identified with the Galois group Gal(C/R), Aut(X) is the group of holomorphic
automorphisms of X and the action of the non-trivial element of Z/2Z on Aut(X) is
given by the conjugation by σ .

This cohomological interpretation, together with the finiteness result
[14, Théorème 6.1], allows us to answer the second question on the finiteness of
real structures in the affirmative when Aut(X)/Aut0(X), the group of components
of Aut(X), is a finite group or an arithmetic group: for instance, Fano varieties [17,
D.1.10], abelian varieties (or more generally complex tori) [17, D.1.11], and varieties
of general type etc., in particular, when dim X = 1. For the next case where X is
a complex projective surface, there is an extensive study carried out mainly by the
Russian school (Degtyarev, Itenberg, Kharlamov, Kulikov, Nikulin et al.). We know
that there are only finitely many real structures for del Pezzo surfaces, minimal alge-
braic surfaces [17], algebraic surfaces with Kodaira dimension ≥ 1 (cf. [34]) etc.. The
remaining biggest challenge for surfaces seems to be the case of rational surfaces and
in fact more recently, based on [18, Proposition 2.2] and [24, Theorem 3.13], Benzerga
[8] shows that a rational surface with infinitely many non-equivalent real structures, if
it exists, must be a blow-up of the projective plane at at least 10 points and possesses
an automorphism of positive entropy, cf. also [40].

It turns out that the answer to the finiteness question is negative in general.
The first counter-example is due to Lesieutre in [36], where he constructs a six-
dimensional projective manifold with infinitely many non-equivalent real structures
and discrete non-finitely generated automorphism group. Inspired by Lesieutre’s
work, Dinh and Oguiso [19] show that suitable blow-ups of some K3 surfaces
have the same non-finiteness properties, and hence produce such examples in each
dimension ≥ 2.

The finiteness question for higher-dimensional (≥ 3) varieties in general can be very
delicate, and apart from the general positive results and the counter-examples men-
tioned above, it is far from being well-understood (see however the related work in the
affine situation [16] and on quasi-simplicity [59]). The present work is an attempt to
investigate this finiteness question systematically for some higher-dimensional mani-
folds.

1.2 Klein actions on hyperkähler manifolds

Our initial purpose of this paper is to give a positive answer to the question on the finite-
ness of real structures for an important class of manifolds, called compact hyperkähler
manifolds (cf. [7,28]). Recall that a compact Kähler manifold is called hyperkähler
or irreducible holomorphic symplectic, if it is simply connected and has a nowhere
degenerate holomorphic 2-form which is unique up to scalars. Equivalently, these are
the simply connected compact Kähler manifolds with holonomy group equal to the
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symplectic group Sp(n), where n is the half of the complex dimension of themanifold.
Compact hyperkähler manifolds are the natural higher-dimensional generalizations of
K3 surfaces. By theBeauville–BogomolovDecompositionTheorem ([7, Théorème 2],
[10]), compact hyperkähler manifolds, complex tori and (strict) Calabi–Yau varieties,
are the fundamental building blocs of compact Kähler manifolds with vanishing (real)
first Chern class. Our first main result is the following:

Theorem 1.1 Any compact hyperkähler manifold has only finitely many real structures
up to equivalence.

For K3 surfaces, which are the two-dimensional hyperkähler manifolds, the work
of Degtyarev–Itenberg–Kharlamov [17, Appendix D] not only shows the finiteness
of real structures for K3 surfaces but actually gives much stronger results in the
broader setting of so-called Klein actions. Let us recall the definition: A Klein auto-
morphism is a holomorphic or anti-holomorphic diffeomorphism and a Klein action
on a complex manifold is a group action by Klein automorphisms (Definition 2.1).
We will only consider finite group Klein actions in this paper. Two finite group Klein
actions are considered to be equivalent if they are conjugate by a Klein automor-
phism of the complex manifold. In the case of K3 surfaces, we have the following
result:

Theorem 1.2 ([17, Theorem D.1.1]) A complex K3 surface, projective or not, admits
only finitely many faithful finite group Klein actions up to equivalence.

Our second main result generalizes the previous theorem for higher-dimensional
hyperkähler manifolds:

Theorem 1.3 Any compact hyperkähler manifold has only finitely many faithful finite
group Klein actions up to equivalence.

Theorem 1.1 will be deduced from Theorem 1.3 (Sect. 9). For Theorem 1.3, what
we actually prove is the following stronger result, whose part concerning the Klein
automorphism group is equivalent to Theorem 1.3, by Remark 4.6 and Lemma 4.7.

Theorem 1.4 (Theorems 7.1 and 8.1) For a compact hyperkähler manifold, the Klein
automorphism group, the automorphism group, as well as the birational automorphism
group, contain only finitely many conjugacy classes of finite subgroups.

To prove Theorem 1.4 we will distinguish the projective case (Sect. 7) and the
non-projective case (Sect. 8), and the proof for each case does not apply to the other.
In the projective case, the geometry of the ample cone (resp. movable cone) will play
a crucial role: it defines a non-degenerate convex cone in the space NS(X)R, upon
which the (Klein) automorphism group (resp. birational automorphism group) acts.
Wewill then use results from convex geometry to deal with such actions (Sect. 6.1) and
combine them with the recent work by Amerik–Verbitsky on the so-called Morrison–
Kawamata cone conjecture (Sect. 6.2). In the non-projective case we will approach
the problem from the point of view of non-abelian group cohomology, which will be
reviewed in Sect. 4.
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Finiteness of real structures on compact hyperkähler manifolds…

We give also some rudimentary results towards the existence of real structures on
hyperkähler manifolds in Sect. 5.2. A complex manifold X admitting a real structure
is isomorphic to its conjugate X̄ , and due to Verbitsky’s Global Torelli Theorem for
hyperkähler manifolds [57], we give a description of the periods of those hyperkäh-
ler manifolds bimeromorphic to their conjugate, see Proposition 5.5. Furthermore,
extending the Torelli Theorem of Markman [39], we provide Theorem 5.7 as a
Hodge-theoretic characterization of those hyperkähler manifolds which admit anti-
holomorphic automorphisms.

Various examples of real structures on compact hyperkähler manifolds are con-
structed in Sect. 5.3: Hilbert schemes and more generally moduli spaces of stable
sheaves on K3 surfaces, generalized Kummer varieties and more generally the
Albanese fibers of moduli spaces of stable sheaves on abelian surfaces, Fano vari-
eties of lines on cubic fourfolds and Debarre–Voisin hyperkähler fourfolds etc.

1.3 Finite presentation of automorphism groups

Thanks to the work of Sterk [54], it is known that the automorphism group of a projec-
tive K3 surface is always finitely generated, cf. [31, Corollary 15.2.4]. We ask whether
this finiteness property also holds for automorphism groups, or bimeromorphic auto-
morphism groups, of all compact hyperkähler manifolds.

On one hand, in the non-projective case, the following result of Oguiso provides a
quite satisfying and precise answer:

Theorem 1.5 [48] Let X be a non-projective compact hyperkähler manifold. Then its
group of bimeromorphic automorphisms Bir(X) is an almost abelian group of rank
at most max{1, ρ(X) − 1}, where ρ(X) is the Picard rank of X. Hence the same
conclusion holds for the automorphism group Aut(X) as well. In particular, Bir(X)

and Aut(X) are finitely presented.

Here an almost abelian group of rank r means a group isomorphic to Z
r up to finite

kernel and cokernel, see [48, §8] for the precise definition.
On the other hand, for a projective hyperkähler variety X , Aut(X) and Bir(X) are of

more complicated nature. For example, in [46] and [47, Theorem 1.6], Oguiso shows
that these two groups are not necessarily almost abelian, i.e. abelian up to finite kernel
and cokernel (see [48, §8]). Nevertheless, using Global Torelli Theorem ([30,39,57]),
Boissière and Sarti [15, Theorem 2] prove that Bir(X) is finitely generated. The finite-
generation problem for Aut(X) remained open ever since ([46, Question 1.5], [15,
Question 1]). Our third main result is to give this question an affirmative, and stronger,
answer:

Theorem 1.6 For any projective hyperkähler manifold X, the automorphism group
Aut(X) and the birational automorphism group Bir(X) are finitely presented and
satisfy (FP∞) property.

This result contrasts to the examples of Lesieutre [36] and Dinh–Oguiso [19]
mentioned above. See Sect. 10 for the notion of (FP∞) property and the proof of
Theorem 1.6.
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Remark 1.7 After the first version of our paper appeared on arXiv, the preprint [35]
of Kurnosov and Yasinsky provided another proof of Theorems 1.4 and 1.6, with the
key point being again the cone conjectures. The main difference is that Looijenga’s
results in convex geometry we used here are replaced by results on the geometry of
CAT(0)-spaces.

Notation and convention:

• For a complex manifold, an automorphism is always holomorphic unless we say
explicitly anti-holomorphic or Klein.

• As we will deal a lot with maps and composition of maps, we will drop the
composition symbol ◦ sometimes. So f g means f ◦ g, i.e. ( f g)(x) = f (g(x)).

• A map between two complex vector spaces is called anti-linear or C-linear, if it is
R-linear and anti-commutes with the multiplication by

√−1.

2 Klein automorphisms and real structures

Asalluded to in the introduction, anti-holomorphic automorphismswill play an equally
important role as holomorphic ones in real algebraic geometry.We start with the notion
that comprises both.

Definition 2.1 (Klein automorphisms, cf. [17]) Let X be a complex manifold and G
be a group.

• AKlein automorphism of X is a holomorphic or anti-holomorphic diffeomorphism
from X to itself. We denote by KAut(X) the group of Klein automorphisms of
X . The (biholomorphic) automorphisms of X naturally form a normal subgroup
Aut(X), which is of index at most two in KAut(X).

• A Klein action of G on X is a group homomorphism ρ : G −→ KAut X . We say
that ρ is faithful if it is injective.

• Two Klein actions ρ1, ρ2 of G on X are said to be conjugate, if there exists a Klein
automorphism f ∈ KAut(X) such that ρ1(g) = f ◦ ρ2(g) ◦ f −1 for all g ∈ G.

To understand KAut(X)/Aut(X), let us recall the following standard operation:

Definition 2.2 (Conjugate manifold) Given a complex manifold X = (M, I ), with M
being the underlying differentiable manifold and I being the complex structure, the
conjugate of X is the complex manifold X̄ :=(M,−I ). We denote by

conj : X̄ → X

the ‘identity’ map, which is an anti-holomorphic diffeomorphism.
If moreover X is the analytic space associated to an algebraic scheme defined over

C, then the conjugate of X is the analytic space associated to the conjugate algebraic
scheme X̄ , which is the base-change of X induced by the complex conjugate of the
base field C:
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X̄
conj

�

X

SpecC
Spec conj

SpecC

where the vertical arrows are structure morphisms.

Lemma 2.3 Let X be a complex manifold. The group Aut X is a normal subgroup of
KAut X, of index at most 2. Hence we have the exact sequence

1 −→ Aut(X) −→ KAut(X)
ε−→ {±1} . (1)

The index is 2 (i.e. ε is surjective) if and only if X is isomorphic to its conjugate X̄ as
complex manifolds.

Proof The first assertion is clear from the fact that the composition of two anti-
holomorphic automorphisms is holomorphic. As for the second one, the index being
2 amounts to the existence of anti-holomorphic automorphisms, which is equivalent
to the existence of isomorphisms between X and X̄ , by composition with the map
conj : X̄ → X in Definition 2.2. 
�

As a special case of Klein automorphisms, we have the following classical notion
in real algebraic geometry:

Definition 2.4 (Real structures) Let X be a complex manifold.

• A real structure is an anti-holomorphic diffeomorphism σ : X → X of order 2
(i.e. an involution).

• Two real structures σ1 and σ2 are said to be equivalent, if there exists a holomorphic
automorphism f ∈ Aut(X) such that σ1 ◦ f = f ◦ σ2.

Some examples of real structures are provided in the hyperkähler setting in Sect. 5.3.

Remark 2.5 Obviously, two equivalent real structures are conjugate as Klein automor-
phisms in the sense of Definition 2.1. It is worth mentioning that the converse is also
true. Indeed, if σ and σ ′ are two real structures such that there exists f ∈ KAut(X)

satisfying σ = f ◦ σ ′ ◦ f −1, then σ and σ ′ are conjugate to each other by a holo-
morphic automorphism (hence equivalent), namely, f itself if f is holomorphic and
σ ◦ f if f is anti-holomorphic.

Remark 2.6 If X is a complex manifold endowed with a real structure σ , and Y ⊆ X
is a complex subvariety such that σ(Y ) = Y , then σ |Y defines a real structure on Y .

As is discussed in the Sect. 1, the central problems that we want to address in
this paper are the existence and finiteness of real structures up to equivalence, and
the finiteness of faithful finite group Klein actions up to conjugacy. See Sect. 1 for
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the known cases and counter-examples, as well as the statement of our main results
Theorems 1.1 and 1.3.

3 Pull-backs

To study the group of Klein automorphisms, we have to look at its various natural
representations, among which the most important one for us is its action upon the
Néron–Severi group/space aswell as the ample cone inside it. To this end, we treat with
some details in this section the notion of pull-back of holomorphic vector bundles and
Cartier divisors by anti-holomorphic automorphisms so that we have a well-defined
action by the whole group of Klein automorphisms.

Throughout this section, X is a compact complex manifold and f ∈ KAut(X) is
an anti-holomorphic automorphism, unless otherwise specified. To avoid confusion,
the notation f ∗ is reserved for the usual (differentiable) pull-back.

3.1 Functions and divisors

We start by the pull-back of functions. Given any open subset U in X and any holo-
morphic function g ∈ OX (U ) on it, we define the holomorphic function

f ∗̄g := g ◦ f

on the open subset f −1(U ).
It obviously enjoys the following two properties: for any g1, g2 ∈ OX (U ) we have

f ∗̄(g1 + g2) = f ∗̄g1 + f ∗̄g2, f ∗̄(g1 · g2) = f ∗̄g1 · f ∗̄g2.

In other words,

f ∗̄ : OX −→ f∗OX

is an anti-linear isomorphism of sheaves of C-algebras. This definition of f ∗̄ clearly
extends to the sheaf of meromorphic functions without any change.

Next, let us define the pull-back of Cartier divisors. Let D = {(Ui , gi )} be a Cartier
divisor, where {Ui } is an open cover of X and gi is a non-zero meromorphic function
on Ui such that gi/g j ∈ O∗(Ui ∩ U j ) for all i, j . Following [8, Definition 1.1], the
holomorphic pull-back by f of D is the Cartier divisor

f ∗h D = {( f −1(Ui ), f ∗̄gi )}.

Since f ∗h is a homomorphism of the group of Cartier divisors on X preserving the
subgroup of principal Cartier divisors, it descends to give an isomorphism

f ∗h : Pic X −→ Pic X
L = OX (D) �−→ f ∗hL := OX ( f ∗h D).
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3.2 Vector bundles

An equivalent way to define the holomorphic pull-back via f of a line bundle is to use
directly the cocycle that defines it. This approach generalizes to vector bundles. Let
V be a holomorphic vector bundle on X . As f is anti-holomorphic, the differentiable
pull-back f ∗V is an anti-holomorphic complex vector bundle. Its holomorphic pull-
back by f , denoted by f ∗hV , is by definition the conjugate bundle of f ∗V:

f ∗hV := f ∗V.

In other words, let V be defined on a trivializing open cover {Uα} by the cocycle
gαβ : Uα ∩Uβ −→ GL(r , C). Then f ∗hV is the holomorphic vector bundle defined on
the trivializing open cover

{
f −1(Uα)

}
by the cocycle f ∗̄gαβ = gαβ ◦ f . One checks

easily that this construction is independent of the choice of cocycle, i.e. holomorphic
pull-backpreserves isomorphisms.Wehave the compatibility that for any g ∈ Aut(X),

( f ◦ g ◦ f −1)∗(V) ∼= ( f ∗h )−1 ◦ g∗ ◦ f ∗h (V).

It is well-known that the Chern classes of a complex vector bundle E and those of its
conjugate bundle E are related by ci (E) = (−1)i ci (E). This yields that in H2i (X , Z),

ci ( f ∗hV) = ci ( f ∗V) = (−1)i f ∗ci (V),

where f ∗ : H2i (X , Z) → H2i (X , Z) is the map induced by viewing f as the under-
lying diffeomorphism. Moreover, there is a natural map for sections

f ∗h : H0(X ,V)
�−→ H0(X , f ∗hV)

s = (sα)α �−→ (sα ◦ f )α,
(2)

which is an anti-linear isomorphism.

Remark 3.1 (Variants) Note that the above operation of holomorphic pull-backs by
anti-holomorphic automorphisms extends naturally to all coherent sheaves. More pre-
cisely, given a coherent sheaf E on a complex manifold X with an anti-holomorphic
automorphism f , one can write E as the cokernel of a morphism between two
locally free sheaves F1 → F0, then f ∗h (E) is defined to be the cokernel of
f ∗h (F0) → f ∗h (F1). Even more generally, by taking locally free resolutions, one
obtains an auto-equivalence of the bounded derived category f ∗h : Db(X) → Db(X)

which is exact with respect to the standard t-structure.

Going back to the case of line bundles, the map (2) on sections allows us to study
the rational map associated to the linear system of the holomorphic pull-back of a line
bundle:

Lemma 3.2 (Base loci) Let L be a holomorphic line bundle on a compact complex
manifold and f an anti-holomorphic automorphism. Then

Bs |L| = f (Bs | f ∗hL|).
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Proof It follows from the simple observation that

s(x) = 0 ⇐⇒ s( f ( f −1(x))) = 0 ⇐⇒ ( f ∗h s)( f −1(x)) = 0

for any holomorphic section s of L and any point x of the manifold. 
�
Proposition 3.3 Let L be a line bundle on a compact complex manifold X and f an
anti-holomorphic automorphism. Then we have a commutative square

X
conj ◦ϕ|L|◦conj−1

P

(
H0(X ,L)

)

X
ϕ| f ∗h L|

conj ◦ f �

P(H0(X , f ∗hL)),

� P(conj ◦ f ∗h )

where ϕ denotes the rational map associated to a linear system and P is the projective
space of one-dimensional quotients à la Grothendieck.

Proof Recall that, by definition, ϕ|L| sends a point x to (the class of) the functional
of evaluation of sections in x , say evx . Then on one hand we have ev f (x), and on the
other hand we find evx ◦ f ∗h . Now, for any section s of L, it holds that

ev f (x)(s) = s( f (x)), (evx ◦ f ∗h )(s) = ( f ∗h s)(x) = s( f (x)),

which implies the commutativity of the diagram. 
�
Corollary 3.4 (Positivity) Let L be a holomorphic line bundle on a compact complex
manifold X and f an anti-holomorphic automorphism of X. Then:

(1) L is base-point free if and only if f ∗hL is so;
(2) L is (very) ample if and only if f ∗hL is so.

Remark 3.5 Observe that ifσ is a real structure on a projectivemanifold X , then for any
ample line bundle L on X , L′ := L ⊗ σ ∗hL is also ample. Moreover, L′ is preserved
by σ ∗h , hence it comes from an ample line bundle L′

0 defined on X0, the real model
of X determined by the real structure σ . Therefore a sufficiently high power of L′
induces an embedding of X into a projective space in such a way that σ is realized as
the restriction to (the image of) X of the real structure of the ambient projective space
given by the coordinate-wise complex conjugation.

Similarly, on a compact Kähler manifold X together with a real structure σ , if
ω ∈ H1,1(X , R) is a Kähler class, then −σ ∗(ω) is also a Kähler class. It is therefore
easy to find a σ -anti-invariant Kähler class, for instance ω − σ ∗ω.

Proposition 3.6 Let X be a complex manifold with a real structure σ , and let V be
a holomorphic vector bundle on X. Assume that there exists an isomorphism ϕ :
σ ∗hV −→ V , and consider the composition

	 : H0(X ,V)
σ ∗h−−→ H0(X , σ ∗hV)

ϕ∗−→ H0(X ,V).
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If s ∈ H0(X ,V) is such that 	(s) = s, then the zero locus V (s) of s is invariant
under σ . In particular, if V (s) is smooth then σ |V (s) defines a real structure on it.

Proof We just need to prove that if s(x) = 0, then s(σ (x)) = 0. Let {Uα} be a
trivializing open covering for V , over which s = (sα)α . Given x ∈ V (s), we have
σ(x) ∈ Uα for some α, and so

sα(σ (x)) = 	(sα)(σ (x)) = ϕ∗
(

sα(σ (σ (x)))
)

= ϕ∗
(

sα(x)
)

= 0.


�

Remark 3.7 Note that the map 	 defined in Proposition 3.6 is not necessarily a real
structure on H0(X ,V). It is one if σ and ϕ satisfy certain compatibility in the sense
that the following composition

Vx
conj−−→ V x = (σ ∗hV)σ(x)

ϕσ(x)−−−→ Vσ(x)
conj−−→ Vσ(x) = (σ ∗hV)x

ϕx−→ Vx

is the identity for every x ∈ X .

3.3 Action on the ample cone: the dagger operation

The Néron–Severi group of X , denoted by NS(X), is by definition the image of the
first-Chern-class map

c1 : Pic(X) → H2(X , Z).

Now for any f ∈ KAut(X), holomorphic or anti-holomorphic, we define the holo-
morphic pull-back f † : H2(X , R) → H2(X , R) with R = Z, Q, R or C as

f † := ε( f ) f ∗ =
{

f ∗ if f ∈ Aut X ,

− f ∗ if f /∈ Aut X .

where f ∗ is the usual pull-back by regarding f as a diffeomorphism and ε is the
signature map in (1). Obviously, we have ( f ◦ g)† = g† ◦ f † and ( f −1)† = ( f †)−1

for every f , g ∈ KAut X ; hence the second cohomology of X has a right action of
the group KAut(X).

Recall that for a projective complex manifold X , its ample cone A(X) is the (open)
convex cone of all ample R-divisor classes, which sits inside the Néron–Severi space:

A(X) ⊆ NS(X)R ⊆ H2(X , R).

Lemma 3.8 The right action by † of KAut(X) upon H2(X , R) preserves the Néron–
Severi space NS(X)R and the ample cone A(X).
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Proof For any f ∈ KAut(X), we have

f †c1(L) = ε( f ) f ∗c1(L) = c1( f ∗hL),

where f ∗h (L) is a line bundle, and it is ample if L is ample by Corollary 3.4. We can
conclude since NS(X)R (resp. A(X)) is generated as R-vector space (resp. cone) by
the first Chern classes of line bundles (resp. ample line bundles), and so it suffices to
check for elements of the form c1(L) with L being a line bundle (resp. an ample line
bundle). 
�

Switching to a left action by taking the inverse, we get a homomorphism

KAut(X) −→ Aut (NS(X)R)

f �→ ( f −1)†,

which preserves the ample cone and extends the natural homomorphism Aut(X) →
Aut(NS(X)R) given by the usual pull-back.

4 Non-abelian group cohomology

4.1 A reminder on group cohomology

The main reference is [14]. Fix a finite group G. A G-group is a group A with a
(left) G-action, that is, a homomorphism G → Aut(A). A homomorphism between
two G-groups is called G-equivariant or a G-homomorphism if it commutes with the
G-action. We hence obtain the category of G-groups.

Taking the G-invariant subgroup A �→ AG provides a natural functor from the
category of G-groups to the category of groups. The theory of non-abelian group
cohomology is about the functor H1(G,−) from the category of G-groups to the
category of pointed sets.

Let us briefly recall the definition. For any G-group A, we write ga for the result
of the action of g ∈ G on the element a ∈ A. Then

• The pointed set of 1-cocycles is

Z1(G, A) := {
φ : G → A | φ(gh) = φ(g) · gφ(h)

} ;

with base point being the constant map to the identity of A.
• Two 1-cocycles φ and ψ are equivalent, denoted by φ ∼ ψ , if there exists a ∈ A,
such that aψ(g) = φ(g) · ga.

• The first cohomology of G with values in A, which is a pointed set, is defined as

H1(G, A) := Z1(G, A)/ ∼,

with the class of the trivial cocycle as the base point.
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Remark 4.1 (Abelian group cohomology) In general, H1(G, A) is only a pointed set
instead of a group. However when A is an abelian group (called a G-module), we
see that Z1(G, A) has a natural structure of abelian group, and the equivalence class
of the trivial cocycle defines a subgroup B1(G, A), called the coboundaries. Hence
H1(G, A) can be defined as the quotient abelian group Z1(G, A)/B1(G, A). More-
over, in this case, the group cohomology extends to higher degrees.

As usual, for a short exact sequence1 of G-groups

1 → A′ → A → A′′ → 1, (3)

there is an exact sequence of pointed sets2 [14, Proposition 1.17]

1 → A′G → AG → A′′G → H1(G, A′) → H1(G, A) → H1(G, A′′), (4)

To study the fibers of maps in this exact sequence, we need the following notion
which produces a new G-group out of an old one.

Definition 4.2 (Twisting, cf. [14, §1.4]) Let A be a G-group and A′ a normal subgroup
of A stable by G. Let A′′ be the quotient G-group. Then for any 1-cocycle φ ∈
Z1(G, A), define a new G-action on A′ by

G × A′ → A′

(g, x) �→ φ(g) · gx · φ(g)−1;

and a new G-action on A′′ by

G × A′′ → A′′

(g, x) �→ [φ(g)] · gx · [φ(g)]−1;

The cocycle condition implies that these are well-defined actions; two equivalent 1-
cocycles will define isomorphic G-groups. The new G-groups are denoted by A′

φ and
A′′

φ respectively, called the twisting by φ of A′ and A′′.

Returning to (4), by [14, §1.16], there is a right action of A′′G on H1(G, A′): given
a′′ ∈ A′′G and c ∈ H1(G, A′), choose a lift a of a′′ in A and a representative φ for c in
Z1(G, A′). Then the right action of a′′ sends c to the class in H1(G, A′) represented
by the cocycle φ′(g) = a−1 · φ(g) · ga. This class is well-defined and independent of
the choices involved. The importance of this action is that it can be used to describe
the fibres of the last map in (4):

1 This means that the G-homomorphism from A′ to A is injective and identifies A′ with a normal subgroup
of A such that the quotient group is isomorphic to A′′ via the G-homomorphism from A to A′′.
2 Recall that a sequence of morphisms of pointed sets is called exact, if the image of a morphism is equal
to the fiber of the next morphism over the base point.
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Lemma 4.3 (cf. [14, Corollaire 1.18]) In the exact sequence (4) induced by a short
exact sequence (3), the fiber of the last map through an element of H1(G, A) repre-
sented by a 1-cocycle φ ∈ Z1(G, A) is in bijection with the set of orbits of H1(G, A′

φ)

under the action of A′′G
φ .

In particular, if H1(G, A′′) is finite and H1(G, A′
φ) is finite for any φ ∈ Z1(G, A),

then H1(G, A) is also finite.

Remark 4.4 Similarly, if A′ is a (not necessarily normal) G-subgroup of A, then we
still get an exact sequence of pointed sets like (4) but without the last term and with
A′′ replaced by the pointed set A/A′ of left classes [14, Proposition 1.12]. Moreover,
each fiber of H1(G, A′) → H1(G, A) has a similar description as in Lemma 4.3 as
the set of orbits of a twisting of (A/A′)G under the action of a twisting of AG [14,
Corollaire 1.13].

4.2 Cohomological interpretation

The main interest of introducing the group cohomology is that it ‘classifies’ the real
structures up to equivalence. This observation fits into a more general result due to
Borel–Serre [14, 2.6]. Their statement is in the algebraic setting and holds for any
Galois extension; while the following version suits us best:

Lemma 4.5 (cf. [14, Proposition 2.6]) Let X be a complex manifold. If there exists a
real structure σ of X, then we have a bijection between the set of equivalence classes of
real structures and the first cohomology set H1(Z/2Z,Aut(X)), where the non-trivial
element of Z/2Z acts on Aut(X) by the conjugation by σ .

Proof For the sake of completeness, let us explain why this lemma is almost tauto-
logical (without using [14]). As a 1-cocycle φ : Z/2Z → Aut(X) is determined by
its image φ(1̄), let us write φ := φ(1̄) ∈ Aut(X) by abuse of notation. The 1-cocycle
condition says simply that φ ◦σ is an involution, while two 1-cocycles φ,ψ are equiv-
alent if and only if φ ◦ σ and ψ ◦ σ are conjugate by an automorphism of X . Now it
is clear that the following map

H1(Z/2Z,Aut(X)) = Z1(Z/2Z,Aut(X))/ ∼ �−→ { Real structures on X} / ∼
φ �→ φ ◦ σ,

is a well-defined bijection. 
�
Remark 4.6 Let X be a complex manifold and G be a finite group. By definition, we
have also a bijection between the set of conjugacy classes of Klein actions of G on X
and the cohomology set H1(G,KAut(X)), where G acts trivially on KAut(X). There-
fore, an equivalent formulation of Theorem 1.3 is that for any compact hyperkähler
manifold X , we have

(1) The cardinality of finite group that can act faithfully by Klein automorphisms on
X is bounded;

(2) For any finite group G, H1(G,KAut(X)) is finite, where G acts trivially on
KAut(X).
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4.3 Some algebraic results

We prove here some results involving group cohomology that we need in the subse-
quent sections.

Lemma 4.7 Let A be a group. Then there are only finitely many conjugacy classes of
finite subgroups of A if and only if the following two conditions are satisfied:

(1) The cardinalities of finite subgroups of A are bounded.
(2) For any finite group G, H1(G, A) is a finite set, where A is endowed with the

trivial G-action.

Moreover, if A satisfies this property then so does any subgroup of A of finite index.

Proof Let us first show the equivalence:
For the ‘if’ part: on one hand, by condition (1), there are only finitelymany possibil-

ities for the isomorphism class of the finite subgroup of A. On the other hand, for any
fixed abstract finite group G, the set of conjugacy classes of subgroups of A with an
isomorphism to G is in bijection with the subset of H1(G, A) := Hom(G, A)/ ∼conj
consisting of classes of injective homomorphisms, hence finite. By forgetting the iso-
morphisms to G, this implies that the set of conjugacy classes of subgroups of A that
are isomorphic to G is finite.

For the ‘only if’ part, (1) is clear. For (2), we identify again H1(G, A) with homo-
morphisms from G to A up to conjugation. To determine such a homomorphism,
firstly there are obviously only finitely many possibilities for the kernel; secondly, by
assumption there are only finitely many possibilities for the image, up to conjugacy;
while for each fixed kernel K and image H ⊆ A, the set of conjugacy classes of the
homomorphisms is in bijection with the finite set of group isomorphisms from G/K
to H . Therefore, H1(G, A) is finite.

Finally for the last assertion, let A′ be a subgroup of A of finite index. Then the
condition (1) obviously passes to any subgroup and we only need to check (2) for A′.
Let G be any finite group, then we have an exact sequence of pointed sets, where A/A′
is the (finite) G-set of left classes ([14, Proposition 1.12]):

1 → A′G → AG → (A/A′)G → H1(G, A′) → H1(G, A). (5)

The last term of (5) being finite by assumption, the finiteness of H1(G, A′) is equiva-
lent to the finiteness of fibers of the last map in (5). Thanks to [14, Corollaire 1.13], the
fiber through an element of H1(G, A′) represented by a 1-cocycle φ ∈ Z1(G, A′) is
in bijection with the set of orbits of (Aφ/A′

φ)G under the action of AG
φ , where Aφ and

A′
φ are the G-groups obtained by twistings by φ (Definition 4.2, Remark 4.4). In any

case, A/A′ is a finite set, hence so are the fibers of the last map in (5). The finiteness
of H1(G, A′) is proved. 
�

The next lemma is known, but we give here a proof for the sake of completeness.

Lemma 4.8 Let G be a finite group, and let A be a group endowed with a G-action. If
A is either a finite group or an abelian group of finite type, then H1(G, A) is a finite
set (regardless of the action of G).
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Proof If A is finite, then H1(G, A) is finite by definition. Assume now that A is a
finitely generated abelian group, then H1(G, A) is the quotient of the abelian group of
1-cocycles Z1(G, A) by the subgroup of 1-coboundaries B1(G, A), see Remark 4.1. It
is easy to see that the set of allmaps { f : G −→ A} is a finitely generated abelian group
(which is isomorphic to A|G|). Hence so are the subgroups Z1(G, A) and B1(G, A).
Hence H1(G, A) inherits in a natural way the structure of finitely generated abelian
group. Let now f ∈ Z1(G, A), and define x = −∑

g∈G f (g): we observe that for
every s ∈ G we have the equalities

s x = −
∑

g∈G

s f (g) =
∑

g∈G

( f (s) − f (sg)) = |G| f (s) + x,

showing that |G| f is a 1-coboundary. This implies that H1(G, A) is of torsion, hence
finite. 
�

The following algebraic result is a key gadget needed in the proof of main results.

Lemma 4.9 (Filtration) Let A be a group. Assume that there is a finite filtration

{1} = An ⊆ An−1 ⊆ · · · ⊆ A1 ⊆ A0 = A

by normal subgroups of A, such that for any 0 ≤ i ≤ n − 1, Ai/Ai+1 is either a finite
group or an abelian group of finite type. Then there are only finitely many conjugacy
classes of finite subgroups in A. Moreover, for any finite group G and any G-action
on A preserving the filtration, H1(G, A) is finite.

Proof By Lemmas 4.7 and 4.8, we have for any 0 ≤ i ≤ n − 1, the following two
properties

(1i ) The cardinalities of finite subgroups of Ai/Ai+1 are bounded.
(2i ) For any finite group G and any action of G on Ai/Ai+1, H1(G, Ai/Ai+1) is

finite.

We prove the following two properties, which are trivial for k = n, by descending
induction on k:

(1) The cardinalities of finite subgroups of Ak are bounded.
(2) For any finite group G and any G-action on Ak that preserves A j for all j > k,

H1(G, Ak) is a finite set.

Assuming these are true for k = i + 1, let us show them for k = i .
For (1), let G be any finite subgroup of Ai , then |G ∩ Ai+1| is bounded by the

induction hypothesis (1) for k = i + 1 and G/G ∩ Ai+1 is a subgroup of Ai/Ai+1,
whose cardinality is bounded by (1i ). Therefore the cardinality of G is bounded. (1)
is proved for k = i .

For (2), let G be a finite group which acts on Ai preserving A j for all j > i . The
short exact sequence of G-groups

1 Ai+1 Ai Ai/Ai+1 1,
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induces an exact sequence of pointed sets

· · · → (Ai/Ai+1)
G H1(G, Ai+1) H1(G, Ai ) H1(G, Ai/Ai+1).

The last set being finite by (2i ), the finiteness of H1(G, Ai ) is equivalent to the
finiteness of all fibers of the last map in the previous exact sequence. By Lemma 4.3, it
is enough to show that H1(G, (Ai+1)φ) is finite for all φ ∈ Z1(G, Ai ), where (Ai+1)φ
is the group Ai+1 with the G-action twisted by the 1-cocycle φ (Definition 4.2). As
all subgroups A j are normal in Ai for all j > i , the φ-twisted G-action on Ai+1
preserves A j for all j > i + 1, thus by the induction hypothesis (2) for k = i + 1,
H1(G, (Ai+1)φ) is indeed finite. Therefore H1(G, Ai ) is finite and (2) is proved for
k = i .

The induction process being achieved, we take k = 0 and can conclude by invoking
Lemma 4.7. 
�

Remark 4.10 Apparently, the previous lemma should be compared to [17, D.1.7],
where each subgroup in the filtration is only required to be normal in the precedent one
but not necessarily in the ambiant group. However, the authors think the statement in
loc. cit. is flawed at this point: the normality inside the whole group is necessary and
implicitly used in the proof there (except in the case that G = Z/2Z, the statement in
[17, D.1.7] is still true and the proof can be amended by using a conjugate filtration
each time). On the other hand, in Lemma 4.9 we also allow the constraints on the
subquotients of the filtration to be slightly more flexible. Needless to say, the idea of
the statement, the proof and the usage of Lemma 4.9 are essentially due to [17, D.1.7].

5 Compact hyperkähler manifolds

Let us now specialize to a particularly interesting class of complex manifolds:

Definition 5.1 A compact hyperkähler manifold is a compact Kähler manifold X such
that

• X is simply connected;
• H0(X ,�2

X ) = C · η with η nowhere degenerate.

In particular, it is an even-dimensional complexmanifoldwith trivial canonical bundle.
A generic hyperkähler manifold in the moduli space is non-projective. We refer to
[7,23,28,39] for the basic theory of compact hyperkähler manifolds. In this section,
we will recall some needed results and extend them to the version that we apply in the
proof of main theorems.

Fix a compact hyperkähler manifold X of complex dimension 2n. One crucial
structure we need is the Beauville–Bogomolov–Fujiki (BBF) quadratic form [7] on
H2(X , Z).
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5.1 Action on the BBF lattice

Let η ∈ H2,0(X) be a generator such that

∫

X
(ηη̄)n = 1.

Then the Beauville–Bogomolov–Fujiki form ([7, §8], [11,21]) on the space H2(X , C)

is the quadratic form which associates to any α ∈ H2(X , C) the following

q(α) = n

2

∫

X
(ηη̄)n−1α2 + (1 − n)

∫

X
ηn−1η̄nα ·

∫

X
ηn η̄n−1α. (6)

Up to a scalar, this quadratic form induces a non-degenerate integral symmetric bilin-
ear form on H2(X , Z) of signature (3, b2(X) − 3) (cf. [23, Part III]), which makes
H2(X , Z) a lattice, called the BBF lattice of X .

Remark 5.2 (Isometry) For any f ∈ KAut(X), the action f † defined in Sect. 3.3 is an
isometry on H2(X , C) with respect to the BBF form. In fact, any f ∈ KAut(X) is an
orientation-preserving diffeomorphism of the underlying differentiable manifold (in
the anti-holomorphic case, we use the fact that dim X is even), and so f ∗ is an isometry
for the BBF form by [57, Theorem 5.3]. In particular, the BBF lattice H2(X , Z) admits
a right action of KAut(X) via †.

5.2 Torelli theorems for hyperkähler manifolds

We review some facts on the moduli space of compact hyperkähler manifolds: Ver-
bitsky’s Global Torelli Theorem and Markman’s Torelli Theorem for maps. We will
provide an extension of the latter which deals also with anti-holomorphic (or Klein)
automorphisms.

Let X = (M, I ) be a compact hyperkähler manifold, where M is the underlying
differentiable manifold and I the complex structure. Recall that the period domain is
the complex manifold

� = {[σ ] ∈ P(H2(M, C))
∣∣(σ, σ ) = 0, (σ, σ̄ ) > 0},

where the pairing (−,−) is given by the Beauville–Bogomolov–Fujiki form on X .
Denote by MCG(M) = Diff(M)/Diff0(M) themapping class group of M , where

Diff(M) is the group of orientation-preserving diffeomorphisms of M and Diff0(M)

is its identity component, that is, the group of isotopies. Let

Teich := {complex structures of Kähler type on M}/Diff0(M)

be the Teichmüller space of M , upon which MCG(M) naturally acts.
Let Teich0 be the connected component of Teich to which X (or rather I ) belongs.

Note that X̄ (or rather−I ) also belongs to Teich0, thanks to the existence of the twistor
space. Denote by Teich0b the Hausdorff reduction of Teich0. Let
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P̃ : Teich0b −→ �

Y = (M, I ′) �−→ P(H2,0(Y )),

be the period map. One of the most remarkable progress in the study of hyperkähler
manifolds is the following

Theorem 5.3 (Global Torelli Theorem, cf. [57, Theorem 1.17]) Let the notation be
as above. The maps P̃ is an isomorphism.

Let MCG0(M) be the subgroup of MCG(M) consisting of elements preserving
the component Teich0, then MCG0(M) acts on H2(M, Z) preserving the Beauville–
Bogomolov–Fujiki form.

Definition 5.4 (Monodromy group) The monodromy group Mon2 := Mon2(X) is the
image of MCG0(M) in O(H2(M, Z)) (cf. [3, Definition 2.12]). Equivalently, it is the
subgroup of O(H2(X , Z)) generated by the monodromy transformations in the local
systems R2π∗Z where π : X −→ B is a deformation of X over a complex base (cf.
[39, Definition 1.1] and [1, Remark. 2.21]).

More generally, a parallel transport operator is an isomorphism H2(X , Z) −→
H2(Y , Z) which is induced by parallel transport in the local system R2π∗Z along a
path γ , where π : X −→ B is a deformation such that Xt0 = X , Xt1 = Y , and γ is a
path in B joining t0 with t1 (cf. [39, Definition 1.1]).

The groups MCG0(M) and Mon2(X) naturally act on Teich0b and � respectively.
Since the period map P̃ is equivariant with respect to these two actions, we get a
homeomorphism between the quotient spaces

P : Teich0b /MCG0(M) −→ �/Mon2(X).

Observe that the space �/Mon2(X) is extremely non-Hausdorff: as pointed out in
[58, Remark 3.12], every two non-empty open subsets intersect.

Consider the natural real structure r̃ on � defined by r̃([σ ]) = [σ̄ ]: it has an empty
real locus on�, and since it commutes with the action ofMon2(X) it defines a homeo-
morphism r : �/Mon2(X) −→ �/Mon2(X) of order 2.Moreover, r̃ corresponds via
the periodmap to the real structure R̃ on Teich0b defined by R̃([X ]) = [X ], and induces
an order-2 homeomorphism R on Teich0b /MCG0(M). We can think of r and R as
the natural real structures on the homeomorphic non-Hausdorff spaces �/Mon2(X)

and Teich0b /MCG0(M), which are the so-called birational moduli space M0
b in

[57].
The above consideration yields the following characterization.

Proposition 5.5 Let X be a compact hyperkähler manifold. Then the following con-
ditions are equivalent:

• X is bimeromorphic to X̄;
• The class of X is a fixed point for R in Teich0B /MCG0(M);
• The period P(X) is a fixed point for r in �/Mon2.
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Proof Just observe that X is bimeromorphic to X̄ if and only if the corresponding
points in Teich0b are in the same MCG0(M)-orbit. 
�

To give amore precise description of those hyperkählermanifolds admitting an anti-
holomorphic automorphism, we will make use of two other ingredients: the twistor
space of a hyperkähler manifold and Markman’s Torelli Theorem for morphisms.

Let us firstly recall the construction of the twistor space. Let X = (M, I ) be a com-
pact hyperkähler manifold as before. Denoting by g a hyperkähler metric compatible
with the complex structure, then there exist two other complex structures J and K such
that I J = K and g is Kähler with respect to both of them. It turns out that g is Kähler
with respect to all the complex structures of the form aI + bJ + cK with a, b, c ∈ R

and a2 + b2 + c2 = 1. The set of such complex structures is then naturally identified
with P

1 and the manifold M × P
1 is in a natural way a complex manifold (called the

twistor space of X ) with the property that the projection to P
1 is holomorphic and the

fibre over (a, b, c) ∈ S2 = P
1 is the complex manifold (M, aI + bJ + cK ).

In [39] Markman proved the following Torelli Theorem for maps, which charac-
terizes the isometries arising from pull-back by isomorphisms.

Theorem 5.6 (cf. [39, Theorem 1.3]) Let X and Y be compact hyperkähler manifolds
which are deformation equivalent. Let ϕ : H2(Y , Z) −→ H2(X , Z) be a parallel
transport operator, which is an isomorphism of integral Hodge structures. There exists
an isomorphism f : X −→ Y such that f ∗ = ϕ if and only if ϕ maps a/any Kähler
class on Y to a Kähler class on X.

We propose the following analogue of Markman’s Torelli Theorem 5.6 for anti-
holomorphic isomorphisms.

Theorem 5.7 Let X and Y be two deformation equivalent compact hyperkähler man-
ifolds, and let ϕ : H2(Y , Z) −→ H2(X , Z) be an isomorphism. There exists an
anti-holomorphic isomorphism g : X −→ Y such that g∗ = ϕ if and only if ϕ

satisfies the following conditions:

(1) it is a parallel transport operator,
(2) it is an isometry for the Beauville–Bogomolov–Fujiki quadratic forms,
(3) it is an anti-morphism of Hodge structures, that is, ϕ

(
H2,0(Y )

) = H0,2(X),
(4) ϕ(KY ) ∩ (−KX ) �= ∅.

Proof Consider the ‘identity’ map between X and X̄ :

conj : X̄ = (M,−I ) −→ X = (M, I )
x ∈ M �−→ x ∈ M .

The map conj∗ : H2(X , Z) −→ H2(X̄ , Z) enjoys then the following properties.

(1) It is a parallel transport operator, as it coincides with the parallel transport in
the twistor space induced by any path from −I to I . The reason is that, as we
mentioned, this family is differentiably trivial and P

1 is simply connected.
(2) It is an isometry for the Beauville–Bogomolov–Fujiki form, for the reason that

this form is invariant under the exchange of η and η̄.
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(3) It is an anti-morphism of Hodge structures.
(4) conj∗(KX ) = −KX̄ .

Assume that we are given ϕ with the properties in the statement. First of all, observe
that the existence of the twistor space implies that X and X̄ are deformation equivalent.
Then the parallel transport operator

ψ = conj∗ ◦ ϕ : H2(Y , Z) −→ H2(X̄ , Z)

is a Hodge isometry, so by Theorem 5.6 there exists a holomorphic isomorphism
f : X̄ −→ Y such that f ∗ = ψ . This means that g := f ◦ conj−1 : X → Y is an
anti-holomorphic isomorphism, such that g∗ = conj∗−1 ◦ f ∗ = conj∗−1 ◦ ψ = ϕ.

The other implication is done in a similar way. 
�
Remark 5.8 Theorem 5.7 allows us to reduce the problem of existence of anti-
holomorphic automorphisms of a compact hyperkähler manifold X to the problem of
existence of anti-Hodge monodromy transformations ϕ on H2(X , Z) anti-preserving
Kähler classes, which remains challenging even for K3 surfaces.

As a consequence, if we define

Mon2Hdg(X) = {ϕ ∈ Mon2(X)
∣∣ϕ preserves the Hodge structure of H2(X , Z)}

and

Mon2KHdg(X) =
{
ϕ ∈ O(H2(X , Z))

∣∣∣∣
ϕ ∈ Mon2Hdg(X) or − ϕ ∈ Mon2(X)

and ϕ(H2,0(X)) = H0,2(X)

}

then we can merge Theorems 5.6 and 5.7 together to have a full characterisation of
operators of the form g†.

Corollary 5.9 Let ϕ ∈ Mon2KHdg(X). Then ϕ = f † for some f ∈ KAut(X) if and only
if ϕ sends some Kähler class to a Kähler class.

Proof Indeed we have ϕ = g† = −g∗ if and only if g∗ = −ϕ, which by Theorem 5.7
is equivalent to ϕ ∈ Mon2KHdg(X) and ϕ sends some Kähler class to a Kähler class.


�

5.3 Examples of real structures on hyperkähler manifolds

We provide in this subsection some natural constructions of real structures on compact
hyperkähler manifolds.

5.3.1 Hilbert schemes of K3 surfaces

Let S be a K3 surface equipped with a real structure σ . We show that for any n ∈ N,
σ induces a natural real structure on S[n], the n-th Hilbert scheme (or rather Douady
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space) of S. To this end, the easiest way is to use our Torelli Theorem 5.7 for anti-
holomorphic automorphisms.

By [7, Proposition 6], for any n ≥ 2, there is a Hodge isometry

H2(S[n], Z) � H2(S, Z) ⊕ Z · δ,

where δ is half of the class of the exceptional divisor, hence (δ, δ) = −2(n − 1) and
H2(S, Z) is mapped injectively into H2(S[n], Z) by sending α to the pull-back, via
the Hilbert–Chow morphism, of the descent on S(n) of theSn-invariant class α×n on
Sn .

Consider the automorphism

ϕ = σ ∗ ⊕ (− id) : H2(S, Z) ⊕ Z · δ −→ H2(S, Z) ⊕ Z · δ.

As σ is a real structure, ϕ is clearly an isometry, involution and an anti-morphism
of Hodge structures (cf. Theorem 5.7). To apply Theorem 5.7, let us consider the
action of ϕ on the Kähler classes. By Remark 3.5, there exists a Kähler class ω ∈
H1,1(S, R) such that σ ∗ω = −ω. The image of ω in H2(S[n], R) is on the boundary
of the Kähler cone (i.e. semi-positive), however for a sufficiently small ε > 0, ω −
εδ ∈ H1,1(S[n], R) is indeed Kähler and is moreover ϕ-anti-invariant. Finally, ϕ is
orientation-preserving (in the sense of [39, §4]) by construction; and since it acts on
the discriminant lattice of H2(S[n], Z) as− id, we see that ϕ is a monodromy operator
by [39, Lemma 9.2].

With all the hypotheses of Theorem 5.7 being fulfilled, it implies that ϕ = σn
∗

for some anti-holomorphic automorphism σn of S[n]. Since the only (holomorphic)
automorphism of S[n] acting trivially on H2(S[n], Z) is the identity ([7, Proposition
10]), we conclude that σ 2

n = id, that is, σn is a real structure on S[n].
The geometric description of σn is as expected: for any length-n closed analytic

subscheme i : Z ↪→ X , consider the base-change by the conjugate automorphism of
the base field C:

Z̄

σ◦i ′ �

conj

i ′

Z

i

S

f

S̄

f ′ �

σ

conj
S

f

Spec(C)
conj

Spec(C)

then define the image of Z by σn to be the length-n closed subscheme σ ◦ i ′ : Z̄ ↪→ S.
One can check the anti-holomorphicity by looking at the inducedmorphism on tangent
spaces. We leave the details to the reader. Note that this construction generalizes to
any complex surfaces.
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5.3.2 Moduli spaces of stable sheaves on K3 surfaces

An important source of examples of hyperkähler manifolds is provided by the mod-
uli spaces of stable sheaves on K3 surfaces, generalizing Hilbert schemes discussed
before. As the Kählerness of the moduli spaces of stable sheaves on non-projective
K3 surfaces has not been completely settled yet (cf. [50,52]), we restrict ourselves to
the algebraic setting.

Let S be a projective K3 surface. Let H̃(S, Z) be the Mukai lattice, that is, the
free abelian group H∗(S, Z) endowed with the Mukai pairing given by (v0, v1, v2) ·
(v′

0, v
′
1, v

′
2) = v1 · v′

1 − v0v
′
2 − v′

0v2, where vi , v
′
i ∈ H2i (S, Z). Thanks to the works

[7,22,28,42,45] etc., given a Mukai vector v = (v0, v1, v2) ∈ H̃(S, Z) with v1 ∈
NS(S) primitive and v0 > 0, and a v-generic ample line bundle H , the moduli space
of H -semistable sheaves on S with Mukai vector v, denoted by M := MH (S, v),
is a projective hyperkähler manifold of dimension 2n := (v, v) + 2, deformation
equivalent to the n-th Hilbert scheme of S; and all sheaves parametrized by M are
stable. The objective of this subsection is to show that a real structure on S gives rise
to a canonical real structure on M , under natural compatibility conditions.

More precisely, let σ be a real structure on S such that σ ∗(v) = v∨ := (v0,−v1, v2)

and σ ∗(c1(H)) = −c1(H). We claim that

σ ∗h : M → M

is a real structure (see Remark 3.1 for the holomorphic pull-back of a coherent sheaf).
The first assumption on Mukai vectors, which says nothing else but σ ∗(v1) = −v1,
implies that for any sheaf E on S with v(E) = v, we have

v
(
σ ∗h (E)

) = ch
(
σ ∗E

) · √
td(S) = σ ∗ (v(E))∨ = v(E);

while the second assumption on polarization, which says that σ ∗h (H) � H , implies
that the stability condition is preserved, as the slope of a torsion-free sheaf E satisfies

μ(σ ∗h E) = c1(σ ∗E) · c1(H)

rk E
= σ ∗ (−c1(E)) · (−σ ∗c1(H))

rk E
= μ(E).

In other words, the category of sheaves parametrized by M are preserved, hence σ ∗h

is an involution on M .
To see that σ ∗h is anti-holomorphic, we go back to the GIT construction of M

(cf. [26]). Denote P(t) := v0 + v2 + t(v1 · H) + t2
2 v0(H2) the Hilbert polynomial

determined by the Mukai vector v. By the boundedness of sheaves of fixed Mukai
vector, there exists an integer m such that all sheaves parametrized by M are m-
regular. Let V be a fixed complex vector space of dimension P(m), the dimension
of H0(S, E ⊗ Hm) for any E parametrized by M . Let R be the stable locus of the
Quot-scheme Quot(V ⊗ H−m, P), upon which PGL(V ) naturally acts, then M is the
geometric quotient of R by PGL(V ). Now σ induces the following anti-holomorphic

involution on the Quot-scheme, denoted by σ̃ . Choose an isomorphism f : H
�−→
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σ ∗h H such that the composition H
f−→ σ ∗h H

σ ∗h ( f )−−−−→ (σ ∗h )2(H) = H is the identity;
this is always achievable by modifying f by a scalar. We define the image by σ̃ of a
quotient [q : V ⊗ H−m � E] to be the quotient [q ′ : V ⊗ H−m � σ ∗h (E)] given as
the following composition

q ′ : V ⊗ H−m idV ⊗ f −m

� V ⊗ σ ∗h H−m σ ∗h (q)
σ ∗h (E).

By the hypothesis on f , σ̃ is an involution on the Quot-scheme, which is anti-
holomorphic by construction. As is explained before, the subscheme R is preserved by
σ̃ . Moreover, it is clear that the action commutes with the natural action of PGL(V ).
Therefore, σ̃ descends to a real structure σM on the GIT quotient R/PGL(V ) = M ,
which maps [E] to [σ ∗h (E)] as promised.

5.3.3 Moduli spaces of stable sheaves on abelian surfaces

Similarly to the previous two examples using K3 surfaces, one can start instead with
abelian surfaces (ormore generally two-dimensional complex tori). Let A be an abelian
surface, v a primitive Mukai vector with v0 > 0 and v2 ≥ 6, and H a v-generic polar-
ization, then by the works [7,42,60] etc., the Albanese fibers of MH (A, v), denoted by
K H (A, v), is a projective hyperkähler variety of dimension 2n = v2 −2, deformation
equivalent to generalized Kummer varieties. Now suppose that σ is a real structure on
A such that it respects the group structure and anti-preserves v1 and H . Then the same
argument in the case of K3 surface applies and shows that MH (A, v) has a natural real
structure, which leaves invariant the (isotrivial) Albanese fibration, hence induces a
natural real structure on K H (A, v).

5.3.4 Beauville–Donagi and Debarre–Voisin hyperkähler fourfolds

We will start by some general results. Let V be an n-dimensional complex vector
space endowed with a real structure: V = V0 ⊗R C. This real structure naturally
induces real structures on tensor functors like V ∗, V ⊗m ,

∧h V , Symt V , as well as on
homogeneous varieties (projective spaces, flag varieties etc.) constructed from them.

Let k ∈ N, Grass(k, V ) be the Grassmannian variety and S the tautological sub-
bundle on it. For any partition λ of length at most k, the corresponding Schur functor
gives rise to a homogenous bundle SλS∗. Note that they possess natural real structures
since they admit natural real forms, namely the R-scheme Grass(k, V0), the tautologi-
cal sub-bundle S0 on it and SλS∗

0 respectively; we are in the setting of Proposition 3.6
and actually a better one: σ and ϕ are compatible (Remark 3.7).

Since the Bott isomorphism

H0(Grass(k, V ), SλS∗) ∼= SλV ∗ (7)

is clearly compatiblewith the induced real structures on both sides, for any real element
of SλV ∗, we obtain a section of the homogenous bundle SλS∗ that is invariant under
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the real structure, hence by Proposition 3.6, its zero locus inherits a real structure from
that of Grass(k, V ).

We now provide two examples where this construction yields a real structure on
hyperkähler manifolds.

• (Beauville–Donagi [5]) n = 6, k = 2, λ = (3). Let V be a 6-dimensional complex
vector space and f ∈ Sym3 V ∗ defines a smooth cubic fourfold X ⊆ P(V ). The
zero locus of the corresponding section via (7)

s f ∈ H0(Grass(2, V ),Sym3 S∗)

is then the Fano variety of lines contained in X , denoted by F(X), which is a
hyperkähler fourfold, deformation equivalent to the Hilbert square of a K3 surface
[5]. Once we endow V with a real structure and choose f to be a real form, we
have a natural real structure on F(X).

• (Debarre–Voisin [20]) n = 10, k = 6, λ = (1, 1, 1). Let V be a 10-dimensional
complex vector space and f ∈ ∧3 V ∗ a generic cubic form. It is shown in [20]
that the zero locus of the corresponding section via (7)

s f ∈ H0(Grass(6, V ),

3∧
S∗)

is a hyperkähler fourfold, deformation equivalent to the Hilbert square of a K3
surface. As soon as V is equipped with a real structure and f is chosen real (it is
always possible even with the genericity condition on f : the real locus of

∧3 V ∗
is Zariski dense), we get a natural real structure on the hyperkähler fourfold.

In the same spirit, for polarized K3 surfaces with small degree where a Mukai
model is available, one can construct from a real structure on the homogenous data
a canonically associated real structure on the K3 surface. We leave the details to the
reader.

6 Cone conjecture for hyperkähler varieties: an extension

Given any projective complex manifold X we can consider the natural action of the
automorphism group Aut(X) on the rational closure (see Definition 6.2) of the ample
coneA(X). The Morrison–Kawamata cone conjecture predicts that this action admits
a fundamental domain which is a (convex) rationally polyhedral cone when the canon-
ical bundle of X is numerically trivial. See [41, Cone conjecture], [33] for the original
source, [44,54–56] for the surface case, [39] for the movable cone analogue for hyper-
kähler varieties, [51] for abelian varieties and [38] for a modern survey as well as
results for Calabi-Yau varieties. The cone conjecture, as well as its Kähler version,
has recently been proved in the case of hyperkähler manifolds by Amerik–Verbitsky
[3, Theorem 5.6], [4, Remark 1.5] (see also [43] for the cases of K3[n] and Kummer
deformation type). The aim of this section is to prove an extended version of the cone
conjecture on the ample cone of a projective hyperkähler manifold with respect to the
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natural action of the Klein automorphism group KAut(X) given by the † operation
defined in Sect. 3.3.

Apart from Amerik–Verbitsky’s work, we will need some general results in convex
geometry which are collected in Sect. 6.1.

6.1 Convex geometry and actions on cones

Let V be a finite-dimensional real vector space with a Q-structure.

Definition 6.1 (cf. [37, Definition 2.1]) Let � be a subset of V .

(1) (Polyhedra, rational polyhedra).Wesay that� is apolyhedron if it can be defined
as the intersection of finitely many closed half-spaces in V . If, with respect to the
given Q-structure, those half-spaces are definable over Q, then we say that � is a
rational polyhedron.

(2) (Faces). Let � be a polyhedron in V given as the intersection of a finite number
of closed half-spaces, whose boundaries give a finite collection of hyperplanes
H1, . . . , Hm . A face of � is a subset of the following form

F = � ∩
⋂

j∈J

Hj , with J ⊆ {1, . . . , m}.

A polyhedron hence has only finitely many faces. A one-dimensional face of a
polyhedral cone is called a ray. Be aware that this convention is different from [3]:
a face here is not necessarily of codimension 1.3

Definition 6.2 (Rational closure) Let C be a non-degenerate open convex cone in a
finite dimensional real vector space V and fix a Q-structure on V . We define C+ as
the convex hull of C ∩ V (Q). Then C+ is again a convex cone, with C ⊆ C+ ⊆ C .

We are interested in the actions of subgroups � of GL(V ) which stabilize C , hence
act onC . In particular, we seek for a fundamental domain for the action of� onC , that
is, a closed subset D with non-empty interior int(D), such that

⋃{γ · D | γ ∈ �} = C
and the sets {γ · int(D) | γ ∈ �} are mutually disjoint.

The following finiteness property is used in the proof of Theorem 1.4.

Proposition 6.3 (Siegel property, [37, Theorem 3.8]) Let C be a non-degenerate
open convex cone in a finite dimensional real vector space V equipped with a fixed
Q-structure. Let � be a subgroup of GL(V ) which stabilizes C and a lattice in V (Q).
Then � has the Siegel property in C+: if �1 and �2 are polyhedral cones in C+, then
the collection {(γ · �1) ∩ �2 | γ ∈ �} is finite.

The following result is a generalization of the classical theory of Siegel sets. Recall
that for a cone C in V , its open dual C◦ ⊆ V ∗ is the interior of the cone of those
real-valued functionals which are non-negative on C .

3 A codimension-one face would be called a facet.
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Theorem 6.4 (cf. [37, Proposition 4.1 and Application 4.14]) Let C be a non-
degenerate open convex cone in a finite dimensional real vector space V equipped
with a fixed Q-structure. Let � be a subgroup of GL(V ) which stabilizes C and some
lattice in V (Q). Assume that:

(1) there exists a polyhedral cone � in C+ such that � · � ⊇ C;
(2) there exists an element ξ ∈ C◦ ∩ V ∗(Q) whose stabilizer in � is trivial.

Then � admits a fundamental domain � for its action on C+, which is a rational
polyhedral cone.

We will be interested in the case where V comes from a hyperbolic lattice. Then
via the metric, V is identified with V ∗ and C with its open dual C◦. Hence the second
assumption of Theorem 6.4 will be automatically satisfied thanks to the following fact.
This proposition should be known to experts. But as we could not find a reference, a
proof is included below for the convenience of the reader.

Proposition 6.5 Let L be a hyperbolic lattice4 of rank m ≥ 1 and C ⊆ V := LR one
of the two connected components of the set {v ∈ V | v2 > 0}. Let � be a subgroup of
O(L) which preserves C. Then the set of points x ∈ C whose stabilizer in � is trivial
is open. In particular, there exists a rational point in C with trivial stabilizer.

Proof Let x ∈ C , and assume that γ ∈ � fixes x : as a consequence γ ∈ O(L)∩O(x⊥),
and so Stab�(x) is finite for every x ∈ C . It then makes sense to speak of the set of
points with minimal stabilizer, and we want to prove first of all that this set is open,
and then that the minimal stabilizer is trivial; which will imply the proposition.

Consider the hyperboloid model H
m−1 = P(C) of the hyperbolic space, on

which our group � acts naturally as a discrete group of isometries with respect
to the hyperbolic distance d. Let [x] ∈ H

m−1 be a point with minimal stabilizer,
r = r(x) = 1

3 minγ∈��Stab�(x) d([x], γ · [x]) and consider the ball B = B([x], r).
Then B ∩ γ · B �= ∅ if and only if γ ∈ Stab�(x). Moreover, for any [y] ∈ B and
γ ∈ Stab�(y) we have that d([y], γ · [x]) = d([y], [x]) and so γ must stabilize also
[x], i.e. Stab�(y) ⊆ Stab�(x). As Stab�(x) is of minimal cardinality these two must
coincide, which proves that the set of points with minimal stabilizer is open.

We want to prove that the minimal stabilizer is trivial. Let x ∈ V and B ⊆ H
n−1 =

P(V ) be as above. The pre-image of B in V is then an open subset, containing a basis
e1, . . . , en for V . For γ ∈ Stab�(x)we know from the previous part that γ ∈ Stab�(ei )

for every i , which readily implies that γ is the identity. 
�

6.2 Cone conjectures

In this subsection, let X be a projective hyperkähler manifold. Thanks to the BBF
form (Sect. 5.1), the Néron–Severi space NS(X)R is endowed with a non-degenerate
symmetric bilinear form of signature (1, ρ(X) − 1). Let A(X) ⊆ NS(X)R be the
ample cone of X . Let Aut(A(X)) be the group of isometries of NS(X)R preserving
the ample cone A(X), the group of motions of A(X).

4 A hyperbolic lattice is a free abelian group of finite rank endowed with a non-degenerate bilinear form
of signature (1, rank−1).
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Recall that the natural action of Aut(X) on A(X) is extended in Sect. 3.3 to an
action of KAut(X), denoted by †, see Lemma 3.8. Let

Aut∗(X) = im(Aut(X) −→ Aut(A(X)))

and similarly for KAut∗(X).
For a hyperkähler variety X , the Morrison–Kawamata cone conjecture is proved

recently by Amerik–Verbitsky ([3,4]) based on their earlier work [1], using hyperbolic
geometry and ergodic theory. Their result says that Aut(X) acts with finitely many
orbits on the set of facets of the Kähler cone of X (see [2, Theorem 2.13 and the
discussion after]). As a consequence, they deduce the second part of Theorem 6.6
below. Before that, Markman [39] established a birational analogue for the movable
cone MV(X), that is, the cone generated by the classes of movable divisors, and with
the action on it given by the group

Bir∗(X) = im(Bir(X) −→ Aut(MV(X))).

The main result of this section is part (3) of the following theorem, which confirms
the analogous cone conjecture for the action of Klein automorphisms KAut∗(X) on
the rational closure (Definition 6.2) A+(X) of the ample cone A(X):

Theorem 6.6 (Cone conjectures: extended) Let X be a projective hyperkähler mani-
fold. Then

(1) ([39, Theorem 6.25]) There exists a rationally polyhedral cone � which is a
fundamental domain for the action of Bir∗(X) on MV+(X).

(2) ([3, Theorem 5.6]) There exists a rationally polyhedral cone � which is a funda-
mental domain for the action of Aut∗(X) on A+(X).

(3) There exists a rationally polyhedral cone � which is a fundamental domain for
the action of KAut∗(X) on A+(X).

Proof (2)The existence of a polyhedral fundamental domain for the action ofAut∗(X)

is proved in [3, §5.2] under the assumption that b2(X) �= 5, this last technical gap on
Betti number was later filled in [4, Corollary 1.4]. The fact that there exists a rational
polyhedral fundamental domain then follows by applying Theorem 6.4 together with
Proposition 6.5.

(3) Note that both Aut∗(X) and KAut∗(X) preserve the ample cone A(X) and the
integral lattice NS(X) inside NS(X)R (see § 3.3). Let � ⊂ A+(X) be a polyhedral
fundamental domain for the action of Aut∗(X) constructed in (2). Then as KAut∗(X)

contains Aut∗(X) (with finite index), one can apply Theorem 6.4 to � = KAut∗(X),
to obtain the rationally polyhedral fundamental domain �. 
�

7 Proof of Theorem 1.4 in the projective case

Theorem 1.4 in the projective case takes the following form:

Theorem 7.1 Let X be a projective hyperkähler variety. Then there are only finitely
many conjugacy classes of finite subgroups of KAut(X), Aut(X) and Bir(X).
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Recall that by Remark 4.6 and Lemma 4.7, Theorem 7.1 implies the projective case
of Theorem 1.3.

Let X be a projective hyperkähler variety throughout this section. To study the group
KAut(X), let us break it into two pieces of different nature. Consider the †-action
defined in Sect. 3.3 of KAut(X) on the Néron–Severi space NS(X)R by isometries
(Remark 5.2). Let Aut(A(X)) be the group of isometries of NS(X)R preserving the
ample coneA(X).Wehave thus a homomorphismKAut(X) → Aut(A(X)).Denoting
by KAut#(X) and KAut∗(X) its kernel and image respectively, we obtain a short exact
sequence of groups:

1 −→ KAut#(X) −→ KAut(X) −→ KAut∗(X) −→ 1. (8)

As A(X) is open in NS(X)R, KAut#(X) is also the group of Klein automorphisms
acting trivially on the Néron–Severi lattice NS(X) � Pic(X).

Proposition 7.2 The group KAut#(X) is finite.

Proof Let Aut#(X) be the group of automorphisms of X acting trivially on NS(X). As
the product of any two non-trivial elements of KAut#(X) is in Aut#(X), Aut#(X) is
of index at most 2 in KAut#(X). Hence it is enough to show the finiteness of Aut#(X).

Let

Auts(X) = { f ∈ Aut(X)
∣∣ f ∗|H2,0(X) = id}

be the group of symplectic automorphisms of X . As X is projective, the transcendental
lattice T (X) := NS(X)⊥B B F carries a polarizable irreducible Hodge structure (cf. [31,
Lemma 3.2.7 and Lemma 3.3.1]). Hence Auts(X) also acts trivially on T (X). Then
the intersection Auts(X) ∩ Aut#(X) is the group of automorphisms acting trivially
both on the transcendental and Néron–Severi lattices, hence trivially on the whole
H2(X , Z) since T (X) ⊕ NS(X) is of finite index in H2(X , Z), by the projectivity of
X . Therefore, thanks to [28, Proposition 9.1], Auts(X) ∩ Aut#(X) is a finite group.

On the other hand, by [31, Corollary 3.3.4], Aut(X)/Auts(X) is a finite cyclic
group, hence so is its subgroup Aut#(X)/(Auts(X) ∩ Aut#(X)). In consequence,
Aut#(X) is also finite. 
�

Concerning the action of Bir(X) on the movable cone MV(X), there is an exact
sequence analogous to (8):

1 −→ Bir#(X) −→ Bir(X) −→ Bir∗(X) −→ 1, (9)

where Bir∗(X) andBir#(X) are the image and the kernel of the natural homomorphism
Bir(X) −→ Aut(MV(X)).

Corollary 7.3 The group Bir#(X) is finite.

Proof As the cone MV(X) is also open in NS(X)R, any f ∈ Bir#(X) acts trivially
on NS(X). It then follows from Theorem 5.6 that Bir#(X) ⊆ Aut(X) ∩ KAut#(X),
which is then finite by Proposition 7.2. 
�
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Here comes the key point of the proof. It concerns KAut∗(X) and Bir∗(X), which
are the images of the homomorphisms KAut(X) −→ Aut(A(X)) and Bir(X) −→
Aut(MV(X))).

Proposition 7.4 Let X be a projective hyperkähler manifold. Then there are only
finitely many conjugacy classes of finite subgroups of KAut∗(X) and Bir∗(X).

Proof Let G be a finite subgroup of KAut∗(X). Fix a rationally polyhedral funda-
mental domain � for the action of KAut∗(X) on A+(X), whose existence is proved
in Theorem 6.6. First of all, we observe that there exists a point x ∈ A(X) such that
g.x = x for every g ∈ G. Indeed, x = ∑

g∈G g.y for any point y ∈ A(X) will work.

Hence there exists h ∈ KAut(X) such that x0 = h†(x) ∈ �. It follows that for every
g ∈ G we have

h† ◦ g ◦ (h−1)†(x0) = h† ◦ g ◦ (h−1)† ◦ h†(x) = h†x = x0,

i.e. the element h† ◦ g ◦ (h−1)† fixes x0 for every g ∈ G. This means that the subgroup
h†Gh†−1

acts on A(X) and fixes a point of �. Therefore

h†Gh†−1 ⊆ {ϕ ∈ KAut∗(X) | ϕ(�) ∩ � �= {0}} =: S.

We claim that S is a finite set. By definition, for any ϕ ∈ S, ϕ(�) and � share at least
a ray. On one hand, � has only finitely many rays; and on the other hand, for each ray
of �, there are only finitely many translates of � by KAut∗(X) sharing it, thanks to
the Siegel property (Proposition 6.3). Therefore {ϕ(�) | ϕ ∈ S} is a finite set, which
implies the finiteness of S since � is a fundamental domain. In conclusion, any finite
subgroup of KAut∗(X) can be conjugated to be contained in some given finite set S,
which admits of course only finitely many subsets.

The proof for Bir∗(X) is exactly the same, provided we replace KAut∗(X),A(X),
A+(X) and � by Bir∗(X),MV(X), MV+(X) and � respectively. 
�
Proof of Theorem 7.1 We address first the group KAut(X). Recall that we have a short
exact sequence (8):

1 −→ KAut#(X) −→ KAut(X) −→ KAut∗(X) −→ 1.

By Lemma 4.7 and Proposition 7.4, we have the following two facts:

(1*) The cardinalities of finite subgroups of KAut∗(X) are bounded.
(2*) For any finite group G, the set H1(G,KAut∗(X)) is finite, where G acts on

KAut∗(X) trivially.

Again by Lemma 4.7, it is enough to establish these two properties for KAut(X):

(1) The cardinalities of finite subgroups of KAut(X) are bounded.
(2) For any finite group G, the set H1(G,KAut(X)) is finite, where G acts on

KAut(X) trivially.

123

Author's personal copy



Finiteness of real structures on compact hyperkähler manifolds…

For (1), let G be any finite subgroup of KAut(X), then G ∩KAut#(X) is a finite group
of bounded cardinality by Proposition 7.2 and G/G ∩ KAut#(X) is a finite subgroup
of KAut∗(X), hence has bounded cardinality by (1*). Therefore, the cardinality of G
is bounded.
For (2), fix any finite group G, the short exact sequence (8), with trivial G-actions,
induces an exact sequence of pointed sets (where the first map is injective by using
Remark 4.4, but we do not need this here):

H1(G,KAut#(X)) −→ H1(G,KAut(X)) −→ H1(G,KAut∗(X)).

The third term being finite (thanks to (2*)), the finiteness of the middle term is
equivalent to the finiteness of the fibers of the second map, which by Lemma 4.3
is implied by the finiteness of the cohomology sets H1(G,KAut#(X)φ) for all
φ ∈ Z1(G,KAut(X)), where KAut#(X)φ is the group KAut#(X) endowed with a
G-action twisted by the 1-cocycle φ. As KAut#(X)φ is in any way a finite G-group,
H1(G,KAut#(X)φ) is obviously finite by definition. The proof is therefore complete.

As Aut(X) has finite index in KAut(X), the result for Aut(X) follows from
Lemma 4.7.

Finally, the proof forBir(X) is the exactly same as the one forKAut(X) by replacing
KAut#(X), KAut∗(X) and Proposition 7.2 by Bir#(X), Bir∗(X) and Corollary 7.3
respectively. 
�
Remark 7.5 The proof of the key Proposition 7.4 actually provides a bound for the
orders of finite subgroups of KAut∗(X) (resp. Bir∗(X)), namely |S|, the number of
translates of the fundamental domain � (resp. �) that share at least a ray with �

(resp. �). This would lead a bound for the orders of finite subgroups of KAut(X)

and Bir(X). Let G ≤ KAut(X) be a finite subgroup, and call G# the subgroup of G
consisting of those Klein automorphisms acting trivially on NS(X) and G∗ the image
of G in O(NS(X)). Then we have

|G| = |G#||G∗| ≤ |S| · 2|G# ∩ Aut(X)|,

so to find a bound for |G| we just need to bound |G# ∩ Aut(X)|. Looking now at
the action of elements in this group on the transcendental lattice T (X) and arguing
as in the proof of Proposition 7.2, we see that we can bound the cardinality of the
subgroup {g ∈ G# ∩ Aut(X) | g∗|H2,0(X) = id} by the cardinality of the group {g ∈
Aut(X) | g∗|H2(X ,Z) = id}, which as we mentioned is finite and depends only on the
deformation type of X . On the other hand, the quotient group naturally embeds in
Aut(X)/Auts(X), which is a finite cyclic group of order say m. It is known by [6,
Proposition 7] that ϕ(m) ≤ b2(X)−ρ(X) ≤ b2(X)−1, hence also m can be bounded
by a constant which depends only on the deformation type of X .
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8 Proof of Theorem 1.4 in the non-projective case

The non-projective case of Theorem 1.4 is the following:

Theorem 8.1 Let X be a non-projective compact hyperkähler manifold. Then there
are only finitely many conjugacy classes of finite subgroups of KAut(X), Aut(X) and
Bir(X).

Recall that by Remark 4.6 and Lemma 4.7, the non-projective case of Theorem 1.3 is
a consequence of Theorem 8.1.

Although the BBF lattice H2(X , Z) is non-degenerate of signature (3, b2(X) − 3)
(cf. Sect. 5.1), its restriction to the Néron–Severi lattice NS(X) has three possibilities
in general (cf. [48]):

(1) a hyperbolic lattice of signature (1, 0, ρ − 1),
(2) an elliptic lattice of signature (0, 0, ρ),
(3) a parabolic lattice of signature (0, 1, ρ − 1),

where ρ = ρ(X) is the Picard rank of X . It is a theorem of Huybrechts [28, Thm. 3.11]
and [29] that the projectivity of X is equivalent to thefirst case thatNS(X) is hyperbolic.

Let X be a non-projective compact hyperkähler manifold in the sequel of this
section. Hence NS(X) with the restriction of the BBF form q, is either elliptic or
parabolic. Let

R := ker(q|NS(X))

be the radical of NS(X), which is either trivial or isomorphic to Z.

Lemma 8.2 Let f be a birational automorphism of a compact hyperkähler variety X.
If f acts trivially onNS(X) and H2,0(X), then it acts trivially on the whole H2(X , Z).

Proof The assumptions imply that f acts trivially on the transcendental lattice
T (X) := NS(X)⊥ (cf. [31, Lemma 3.3.3 and the discussion after that]). If NS(X)

is (hyperbolic or) elliptic, as T (X) ⊕ NS(X) has finite index in H2(X , Z), f ∗ acts
trivially on H2(X).

If NS(X) is parabolic with radical R, then NS(X)Q ∩T (X)Q = RQ and NS(X)Q +
T (X)Q is of codimension 1 in H2(X , Q). In this case, let N = (NS X + T (X))⊥⊥

be
the saturation; this is a primitive sublattice of H2(X , Z), having NS X +T (X) as finite
index sublattice, and the quadratic form on H2(X , Z) restricts to a degenerate form
on N with kernel of rank 1 generated by an element v. We can then find a Z-basis of
H2(X , Z) of the form e1, . . . , et , v, h with e1, . . . , et , v a Z-basis for N . With respect
to this basis, the Gram matrix of the Beauville–Bogomolov–Fujiki form is

G =
⎛

⎝
G0 0 G1

0 0 v · h
GT

1 v · h h2

⎞

⎠ ,

where G0 is a t × t matrix, G1 ∈ Z
t and GT

1 is its transpose. Observe that det G0 �= 0
as N has a rank 1 kernel generated by v, and that v · h �= 0 for otherwise the pairing
on H2(X , Z) would be degenerate.
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Let now ϕ be an isometry of H2(X , Z)which restricts to the identity on NS(X) and
on T (X), or equivalently which restricts to the identity on N . The matrix representing
ϕ with respect to our basis is of the form

M =
⎛

⎝
idt 0 x
0 1 y
0 0 z

⎞

⎠ ,

where x ∈ Z
t and y, z ∈ Z. As this matrix is invertible, we have that z = ±1, and as

it represents an isometry we must have MT G M = G. A computation gives that

MT G M =
⎛

⎝
G0 0 G0x ± G1

0 0 ±v · h
xT G0 ± GT

1 ±v · h xT G0x ± 2GT
1 x ± 2yv · h + h2

⎞

⎠ ,

where the sign ± refers to z = ±1. Since this matrix should equal G, from the fact
that v · h �= 0 we deduce that z = 1. Hence, looking at the top right block we have
G0x + G1 = G1, from which x = 0 as det G0 �= 0. Finally, the bottom right block
reads 2yv · h + h2, and since this must equal h2 and v · h �= 0, we have y = 0. But
then M is the matrix of the identity and we are done. 
�
Proof of Theorem 8.1 Notation is as before. The strategy is to apply Lemma 4.9 to
natural filtrations of Aut(X) and Bir(X). In the following proof, let A denote either
Aut(X) or Bir(X). Consider the following normal subgroups of A:

• A1 := { f ∈ A | f ∗|R = id};
• A2 := {

f ∈ A | f ∗|R = id; f ∗|NS(X)/R = id
}
;

• A3 := {
f ∈ A | f ∗|NS(X) = id

}
;

• A4 := {
f ∈ A | f ∗|NS(X) = id; f ∗|H2,0(X) = id

}
;

• A5 := {
f ∈ A | f ∗|H2(X) = id

}
,

which form a filtration:

1 ⊆ A5 ⊆ A4 ⊆ A3 ⊆ A2 ⊆ A1 ⊆ A.

Let us verify that the successive graded subquotients of this filtration satisfy the
hypotheses of Lemma 4.9, i.e. being finite or abelian of finite type:

• A/A1 is a subgroup of Aut(R), which is either {±1} when R is of rank 1, or zero
when R is trivial. In any case, it is finite.

• A1/A2 is by construction isomorphic to a subgroup of the automorphism group
of the elliptic (i.e. negative definite) lattice NS(X)/R, which is obviously a finite
group.

• A2/A3 is by construction isomorphic to a subgroup ofHomZ(NS(X)/R, R)which
is a free abelian group of finite rank (possibly zero).

• A3/A4 is by construction isomorphic to a subgroup of the image of

Bir(X) → GL(H2,0(X)) � C
∗,
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which is either Z or trivial by Oguiso [48, Theorem 2.4, Propositions 4.3, 4.4].
• Finally, we have A4 = A5 by Lemma 8.2, and this last is finite by [28, Proposi-
tion 9.1].

Therefore, we see that all graded pieces of the filtration are either finite or abelian of
finite type, one can conclude for Aut(X) and Bir(X) by Lemma 4.9. As for KAut(X),
the above filtration for A = Aut(X) consists of normal subgroups of KAut(X) and
KAut(X)/Aut(X) is at most of order 2, so Lemma 4.9 applies. 
�

Remark 8.3 Oguiso [48] shows that for a non-projective compact hyperkählermanifold
X , its bimeromorphic automorphism group Bir(X) is almost abelian of finite rank,
that is, isomorphic to a finite-rank free abelian group, up to finite kernel and cokernel
(see [48, §8]). Hence the same holds for Aut(X) and KAut(X). Unfortunately, we are
not able to deduce our finiteness Theorem 8.1 from this very strong result. The issue
is related to Remark 4.10 about the normality hypothesis in the filtration Lemma 4.9.
However, the authors believe that the subgroups appeared in the proof of Oguiso’s
theorem are indeed normal in KAut(X) and Bir(X). Moreover, if one is only interested
in the finiteness of real structures, then Oguiso’s theorem is enough: if a group A is
almost abelian of finite rank, then H1(Z/2Z, A) is finite, where Z/2Z acts trivially
on A.

9 Finiteness of real structures: proof of Theorem 1.1

For a compact hyperkähler manifold, assume that there exists at least one real structure
(Definition 2.4). In this case, we have a splitting short exact sequence

1 Aut(X) KAut(X)
ε {±1} 1 (10)

Proof of Theorem 1.1 Let us fix a real structure σ . By Lemma 4.5, we need to show
the finiteness of the cohomology set H1(Z/2Z,Aut(X)), where Aut(X) is endowed
with the action of conjugation by σ . The short exact sequence (10) induces an exact
sequence of pointed sets:

· · · → {±1} → H1(Z/2Z,Aut(X)) → H1(Z/2Z,KAut(X)) → · · · .

With {±1} being finite, it suffices, by [14, Corollaire 1.13], to show that the cohomol-
ogy set H1(Z/2Z,KAut(X)) is finite. However the action of Z/2Z on KAut(X) is
given by the conjugation by σ , i.e. an inner automorphism, so by [14, Proposition 1.5],
H1(Z/2Z,KAut(X)) is in bijection with H1(Z/2Z,KAut(X)triv)where KAut(X)triv
is endowed with the trivial Z/2Z-action. Finally, the complement of the base point
(the trivial cocycle) in H1(Z/2Z,KAut(X)triv) is naturally identified with the set of
conjugacy classes of subgroups of order 2 in KAut(X), thus its finiteness is a special
case of Theorem 1.3. 
�

123

Author's personal copy



Finiteness of real structures on compact hyperkähler manifolds…

10 Finiteness properties of automorphism groups: proof of
Theorem 1.6

The goal of this section is to show some strong finiteness properties of the automor-
phism group and the birational automorphism group of a compact hyperkähler variety
(Theorem 1.6), namely finite presentation and (FP∞) property.

Let us briefly recall various finiteness properties involved. Some standard references
are [13] and [9].

Definition 10.1 (Finiteness properties of groups [13]) Let � be a group.

(1) � is called of type (FL) (resp. of length ≤ n) if the trivial Z[�]-module Z has a
finite resolution (resp. of length n) by free Z[�]-modules of finite rank:

0 Z[�]mn · · · Z[�]m1 Z[�]m0 Z 0 .

(2) � is said to be of type (FP) (resp. of length ≤ n) if the trivial Z[�]-module
Z admits a finite resolution (resp. of length n) by finitely generated projective
Z[�]-modules:

0 Pn · · · P1 P0 Z 0 .

(3) Let n ∈ N, we say that � is of type (FPn) if the trivial Z[�]-module Z has a
length-n partial resolution by finitely generated projective Z[�]-modules:

Pn . . . P1 P0 Z 0 .

We say � is of type (FP∞) if it is of type (FPn) for all n ≥ 0.
(4) We say� virtually satisfies a property if it admits afinite-index subgroup satisfying

this property.We can therefore define properties like virtual (FL) and virtual (FP),
denoted by (VFL) and (VFP) respectively.

It follows from definitions that � is of type (FP) if and only if � is of type (FP∞) and
the ring Z[�] is of finite cohomological dimension ([13, Chapter VIII, Proposition
6.1]). For any 0 ≤ n ≤ ∞, a group � is of type (FPn) is equivalent to the same
condition for any finite-index subgroup ([13, Chapter VIII, Proposition 5.1]). Hence
the “virtual (FPn) property” coincides with (FPn) itself and (VFP) implies (FP∞).

The following diagram in Fig. 1 summarizes some known implications (cf. [13,
Chapter VIII].

We will need the following fact:

Proposition 10.2 (Extensions [9, Proposition 2.7], [32, §10, Corollary 2]) Let �′ be
a normal subgroup of a group � with quotient group �′′:

0 → �′ → � → �′′ → 0.

• Assume that �′ is of type (FP∞). Then for any n ∈ N∪{∞}, � is of type (FPn) if and
only if �′′ is so. In particular, the (FP∞) property is preserved under extensions.

• If �′ and �′′ are both finitely presented, then so is �.
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FL

VFL

FP

VFPFinite FP∞

...

FPn

...

FP2

FP1

Finite
presentation

Finite
generation

cd < ∞

Fig. 1 Finiteness properties of groups

Remark 10.3 Actually, all the finiteness properties in Fig. 1 are all preserved under
extensions ([13, Chapter VIII, §6, Exercise 8], [9, P.23, Exercise]), except for (VFL)

and (VFP), where one has to requiremoreover the condition of virtual torsion-freeness
([13, Chapter VIII, §11, Exercise 2]).

Now let us return to the automorphism group and the birational automorphism
group of a compact hyperkähler manifold. As we explained in Sect. 1.3, in the non-
projective case the result of Oguiso [48] says that Bir(X) and Aut(X) are both almost
abelian of finite rank, in particular finitely presented and of type (FP∞). Therefore we
restrict ourselves in the sequel to the projective case.

The key ingredient in our proof is the following result on convex geometry which
is due to Looijenga.

Proposition 10.4 ([37, Corollaries 4.15 and 4.16]) Let C be a non-degenerate open
convex cone in a finite dimensional real vector space V equipped with a Q-structure.
Let � be a subgroup of GL(V ) which preserves C and some lattice in V (Q). If there
exists a polyhedral cone � in C+ such that � · � ⊇ C, then � is finitely presented
and of type (VFL) of length ≤ dim(V ) − 1.

Now we have all the ingredients to show our finiteness result:
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Proof of Theorem 1.6 Let X be a projective hyperkähler manifold. We treat firstly its
automorphism group. Consider the exact sequence

1 Aut#(X) Aut(X) Aut∗(X) 1 ,

where Aut#(X) and Aut∗(X) are respectively the kernel and the image of the natural
representation Aut(X) → O(NS(X)). On one hand, the existence of a polyhedral
fundamental domain for the action of Aut∗(X) on the rational closure of the ample
cone (Theorem 6.6) allows us to apply Proposition 10.4 and conclude that Aut∗(X) is
finitely presented and of type (VFL). On the other hand, by Proposition 7.2, Aut#(X)

is a finite group, which is of course finitely presented and of type (VFL). As a result,
Aut(X) is an extension of two finitely presented groups of type (VFL), hence in
particular of type (FP∞), see Fig. 1. By Proposition 10.2, Aut(X) is also finitely
presented and of type (FP∞).

The above argument applies equally to the birational automorphism group Bir(X).
Indeed, Markman [39] shows that the action of Bir(X), or rather its image Bir∗(X)

under the map of restriction to the Néron–Severi space, on the rational closure of the
movable cone has a rational polyhedral fundamental domain and Looijenga’s result
Proposition 10.4 implies that Bir∗(X) is finitely presented and of type (VFL). We still
have the finiteness of Bir#(X) = ker (Bir(X) → Bir∗(X)) (Corollary 7.3) and so one
can conclude as in the case for Aut(X) using Proposition 10.2. 
�
Remark 10.5 (Klein automorphism group) As Aut(X) is normal and of finite index in
KAut(X), this last is also finitely presented and of type (FP∞) by Proposition 10.2.

Remark 10.6 (Bir vs. Aut) It is asked in [46, Question 1.6] whether, for a projective
hyperkähler variety X , the index of Aut(X) inside Bir(X) is always finite or not. The
answer to this question is negative in general. The first counter-example is constructed
by Hassett–Tschinkel [27, Theorem 7.4, Remark 7.5] (where Aut(X) is trivial while
Bir(X) is infinite) using Fano varieties of lines of special cubic fourfolds; then Oguiso
gives a systematic study in the Picard rank two case [49, Theorem 1.3]. We thank
Ekaterina Amerik for the references.

Remark 10.7 (Arithmeticity) It is in general not true that for a projective hyperkähler
variety X , the groups KAut(X) and Aut(X) are arithmetic groups. Counter-examples
exist already for K3 surfaces: the first one is due to Borcherds [12, Example 5.8];
and later Totaro [56, §6] provided explicit examples of K3 surfaces whose automor-
phism group is not even commensurable with an arithmetic group. If KAut(X) or
Aut(X) were arithmetic, our main results Theorems 1.1, 1.3 and 1.6 would be direct
consequences. This line of consideration raises the following natural question: how
is Aut(X) related to arithmetic groups ? For projective K3 surfaces, the subgroup of
symplectic automorphisms Auts(X) is itself arithmetic (cf. [31, Corollary 14.2.4]);
while for higher dimensional projective hyperkähler manifolds, it is known that the
group Bir(X) is, up to a finite kernel and cokernel, a quotient of an arithmetic group by
a reflection group (this is Boissière–Sarti’s proof of the finite generation of Bir(X), see
[15, Theorem 2]). One could ask whether the automorphism group Aut(X) is almost
arithmetic, i.e. it is arithmetic up to a finite kernel and finite cokernel.
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